71 research outputs found

    Active common-mode filter for PV transformerless grid-connected inverters

    Get PDF
    During the last years, it has been possible to witness a steady and progressive increase of energy production from renewable resources. In particular, the greatest increment has been registered for photovoltaic applications, due to the possibility to install low power implants easily integrated in the urban ambient, the so-called domestic photovoltaic. A photovoltaic system can be islanded, when the energy is extracted from the panels for supplying local loads, as in the case of remote agricultural areas, or grid-connected, where the energy recovered from the panels is directly injected into the mains. Until now, where there was the possibility, grid-connected system has been considered the easiest and most efficient solution for photovoltaic plants. Following these considerations, in the last years there has been a remarkable proliferation, in both academic and industrial field, of new solutions for grid-connected inverters that were designed to maximize efficiency and reliability. Initially, grid-connected inverters were realized employing a line frequency transformer, which, establishing a galvanic insulation between the photovoltaic source and the grid, facilitated the design issues. Nevertheless, because of its bulky dimension, costs, and additional power losses, the use of transformers was progressively abandoned. Nowadays transformerless inverters are the most efficient grid-connected converters commercialized and some companies arrive to claim values of 98% of efficiency for their products. Nevertheless, the absence of a galvanic insulation between the photovoltaic source and the grid gives rise to issues, such us ground leakage currents and possible DC current injection into the grid that must be addressed. The ground leakage current phenomenon was proven to be due to the presence of a parasitic capacitance between the PV cells and the metal structure of the panels, usually grounded for safety reason. A survey of the actual solutions to avoid the arising of ground leakage current in transformerless single-phase systems was elaborated in this work, and a novel classification for transformerless inverters was proposed as well. The principal causes of ground leakage current were investigated, and the contribution to the phenomenon of the common-mode voltage generated at the output of the grid-connected inverters during their operation was analyzed. In fact the common-mode voltage at the output of the converters generates currents that flow in the parasitic capacitance throughout the connection to the ground of the neutral wire of the grid at the MV/LV transformer. For this reason the ground leakage current is also known as common-mode current. A novel approach to cancel the common-mode voltage variations at the output of a transformerless grid-connected converter was proposed. This solution relies on an active common-mode filter connected at the output of the power converter. It is constituted by a common-mode transformer properly supplied by a low-power full-bridge. The proposed solution is applicable to both stand-alone and grid-connected converters. In particular in this work the active filter was applied to a full-bridge power converter topology driven by the efficient 3-level (unipolar) PWM. The feasibility of the proposed solution and the capacity to operate with power factor different from one was proven through extensive simulations in Simulink/Plecs environment, and confirmed with experimental results. On this purpose, a converter prototype was designed and built. It embeds all the components for enabling the connection to the mains in accordance to the Italian legislation CEI 0-21

    A modular speed-drooped system for high reliability integrated modular motor drives

    Get PDF
    Future transportation challenges include a considerable reduction in pollutant emissions at a time when significant increase in demand is predicted. One of the enabling solutions is the electrification of transport systems as this should lead to improved operability, fuel savings, emission reduction, and maintenance. While state-of-the-art technology has demonstrable benefits there needs to be considerable advancement to meet future transportation affordability and emission targets. Primarily, electrical drives need an improved power density, an increased reliability, and a reduced specific cost. For this reason, integrated modular motor drives (IMMDs) present an attractive solution. Modularity leads to redundancy and easier integration. This paper presents a novel speed-drooped control system applied to motors fed by modular paralleled converters. This control technique allows precise speed regulation and power sharing among different segments showing improved fault tolerance and reliability. The design procedure and the power sharing dynamic have been presented and analyzed by means of MATLAB/Simulink and validated in a 3-kW experimental rig, showing good agreement with the expected performance

    Analysis of Voltage Distribution and Connections within a High-Frequency Hairpin Winding Model

    Get PDF
    In the last years the adoption of hairpin windings is increasing, especially in the automotive sector, mainly due to their inherently high fill factor and electric loading capability. A critical aspect related to the reliability and lifetime of every winding typology is the voltage stress due to the uneven voltage distribution. This phenomenon has already been largely analyzed in conventional stranded conductors, while a few studies are available for hairpin windings. With the spreading of wide bandgap devices, the investigation on voltage distribution becomes an ever-timely topic due to their short rise times. This paper presents an analysis of the uneven voltage distribution triggered within hairpin windings by a low rise time waveform, using a complete high-frequency winding model. The different options to series-connect different paths are investigated, providing simple but essential guidelines to reduce the electrical stress within hairpin windings. © 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis paper reflects only the author's view. JU is not responsible for any use that may be made of the information it contains

    Partial Discharge Phenomena in Electrical Machines for the More Electrical Aircraft. Part II: Impact of Reduced Pressures and Wide Bandgap Devices

    Get PDF
    This paper focuses on the inception of partial discharges within the insulation system of electrical actuators used for the More Electrical Aircraft (MEA). Since these machines should operate in the absence of Partial Discharges (PDs), the dependence of the PD Inception Voltage (PDIV) on voltage impulses typical of wide bandgap (SiC) devices is investigated at both 1 bar, reduced pressures close to those typical of aircraft cruising altitudes (150 mbar – 200 mbar) or lower (down to 5 mbar). Propagation issues are not dealt with here as results were obtained working on insulation models consisting of couples of wires twisted together (twisted pairs), thus knowing exactly the potential differences between all points of the insulation model. The results show that the rise times and the switching frequencies associated with wide bandgap devices have little impact on the PDIV. A model able to predict the PDIV of the turn/turn insulation of random wound motors (the most vulnerable part of the insulation) at different pressures is proposed. The model is also able to deal with temperature changes, with limitations that depend on the type on insulation systems

    Response to Discussion of “A modular speed-drooped system for high reliability integrated modular motor drives”

    Get PDF
    The authors appreciate the interest shown in our paper. In the paper under discussion [1], a distributed speed control strategy suitable for multi-three-phase machines with enhanced power sharing capability is presented. The focus of the manuscript is on the power sharing transient controllability achieved by using a sharing regulator based on the droop controller, which was introduced for the first time by Fingas and Lehn [2]. In [1], the authors added the outermost loop in charge of restoring the drooped output speed. The overall control strategy and the design procedure of each loop - current, sharing, and speed - is presented and validated by means of experimental results. Two off-the-shelf three-phase induction machines coupled on the same shaft and controlled by a custom inverter were loaded by a third off-the-shelf three- phase induction machine

    Performance evaluation of a 3-level ANPC photovoltaic grid-connected inverter with 650V SiC devices and optimized PWM

    Get PDF
    Photovoltaic (PV) energy conversion has been on the spotlight of scientific research on renewable energy for several years. In recent years the bulk of the research on PV has focused on transformerless grid-connected inverters, more efficient than traditional line transformer-based ones, but more critical from a power quality point of view, especially in terms of ground leakage current. Neutral point clamped (NPC) inverters have recently gained interest due to their intrinsically low ground leakage current and high efficiency, especially for MOSFET-based topologies. This paper presents an active NPC (ANPC) topology equipped with 650 V SiC MOSFETs, with a new modulation strategy that allows to reap the benefits of the wide-bandgap devices. An efficiency improvement is obtained due to the parallel operation of two devices during the freewheeling intervals. Simulations and experimental results confirm the effectiveness of the proposed converter

    Multistress characterization of fault mechanisms in aerospace electric actuators

    Get PDF
    The concept behind the More Electric Aircraft (MEA) is the progressive electrification of on-board actuators and services. It is a way to reduce or eliminate the dependence on hydraulic, mechanical and the bleed air/pneumatic systems and pursue efficiency, reliability and maintainability. This paper presents a specialised test rig whose main objective is to assess insulation lifespan modelling under various stress conditions, especially investigating the interaction between ageing factors. The test set-up is able to reproduce a multitude of environmental and operational conditions at which electric drives and motors, used in aerospace applications, are subjected. It is thus possible to tailor the test cycle in order to mimic the working cycle of an electrical motor during real operation in aircraft application. The developed test-rig is aimed at projecting the technology readiness to higher levels of maturity, in the context of electrical motors and drives for aerospace applications. Its other objective is to validate and support the development of a comprehensive insulation degradation model

    A PV-Inspired Low-common mode Dual Active Bridge Converter for Aerospace Applications

    Get PDF
    In the framework of the more electric aircraft, the use of isolated dc-dc power conversion for the electrical power distribution system is one of the most investigated solutions. If the dc-dc converter produces a variable common-mode voltage, the leakage current can flow in the interwinding parasitic capacitance of the high-frequency transformer, leading to insulation deterioration and early failure. This paper proposes to use modified H-bridge structures, already employed in the photovoltaic system for dc-ac power converters, to enable a constant common-mode voltage for isolated dc-dc converters. The analysis shows that this solution can achieve the same efficiency as the conventional one, while simulations and experiments show a strong reduction of the common-mode current flowing through the transformer. A reliability analysis showed that the lifetime of the high-frequency transformer can be extended with the proposed solution

    Partial Discharges in Electrical Machines for the More Electric Aircraft—Part I: A Comprehensive Modeling Tool for the Characterization of Electric Drives Based on Fast Switching Semiconductors

    Get PDF
    This paper proposed a modelling approach for the comprehensive analysis of high-frequency challenges in electrical drives designed for aerospace applications, in particular the overvoltage at the machine terminals and the voltage distribution within windings. After a separate description of the models for the estimation of these insulation stress sources, the combined model was detailed. The main benefit of developing a combined, flexible and comprehensive tool is that both overvoltage at machine terminals and uneven voltage distribution can be calculated simultaneously, without neglecting the voltage overshoot when estimating the voltage distribution (and vice versa). In fact, an accurate calculation of the terminal overvoltage is necessary to provide a good estimation of the voltage within winding turns since its waveform shape can be quite different with respect to the converter output, even with cables of a few meters. A case study based on a real aerospace application was considered to investigate the model validity and accuracy. Experimental results were performed on a complete system comprising a SiC-based converter, a connecting cable and a machine stator, proving the simulation model accuracy in terms of peak voltages of both the line-to-line terminal voltage and the turn voltage distribution across the first turns, which are the most relevant quantities for the sake of this study as well as for the investigations of the subsequent companion papers. In the forthcoming papers, the effects of different rise times and cable lengths on the inception of partial discharges will be investigated through fast parametric simulation carried out using the proposed combined model. The feasibility of using conventional insulation systems for aircraft applications using SiC drives fed by a ±270 V DC bus voltage will be discussed, with the aim of signaling and finding solutions to improve the overall reliability

    Segmented Hairpin Topology for Reduced Losses at High Frequency Operations

    Get PDF
    Nowadays, one of the key challenges in transport electrification is the reduction of components’ size and weight. The electrical machine plays a relevant role in this regard. Designing machines with higher rotational speeds and excitation frequencies is one of the most effective solutions to increase power densities, but this comes at the cost of increased losses in cores and windings. This challenge is even more pronounced in preformed windings, such as hairpins, which enable higher slot fill factors and shorten manufacturing cycle times. In this work an improved hairpin winding concept is proposed, aiming to minimize high-frequency losses while maintaining the benefits deriving from the implementation of hairpin windings onto electrical machines. Analytical and finite element models are first used to assess the high-frequency losses in the proposed winding concept, namely the segmented hairpin, proving the benefits compared to conventional layouts. Experimental tests are also performed on a number of motorettes comprising both conventional and proposed segmented hairpin configurations. Finally, these experimental results are compared against those collected from motorettes equipped with random windings, demonstrating the competitiveness of the segmented hairpin layout even at high-frequency operations. © 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper reflects only the author's view. JU is not responsible for any use that may be made of the information it contains
    • …
    corecore